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Topological geometrodynamics (TGD) is an attempt to a unified description of 
fundamental interactions based on the assumption that physically allowed space- 
times are representable as submanifolds of the space, which is a Cartesian 
Product of Minkowski space (or possibly of its light cone) and of CP2, the 
complex projective space of two complex dimensions. This paper, which is the 
second one in the series intended for the presentation of TGD, is devoted to the 
dynamical considerations at semiclassical level. The concept of the classical 
space-time is formulated as a length-scale-dependent notion starting from the 
idea that particles correspond to topological inhomogeneities pointlike in the 
length scale considered. A semiclassical description of matter using Einstein- 
Yang-Mills-type effective action is studied. The requirement that effective action 
reproduces Maxwell electrodynamics at long length scales is shown to lead to 
a rather deep revision of the basic ideas concerning the description of electroweak 
and color interactions. 

1. I N T R O D U C T I O N  

Th i s  p a p e r  is a s e c o n d  o n e  in a ser ies  d e v o t e d  to an  a t t e m p t  o f  

c o n s t r u c t i n g  a t h e o r y  o f  f u n d a m e n t a l  i n t e r a c t i o n s  b a s e d  on  the  f o l l o w i n g  
a s s u m p t i o n s :  

(1) T h e  p h y s i c a l l y  " a l l o w e d "  s p a c e - t i m e s  a re  r e p r e s e n t a b l e  as sub-  

m a n i f o l d s  o f  s o m e  s p a c e  H = V x S, w h e r e  V d e n o t e s  e i t he r  M i n k o w s k i  

s p a c e  o r  its l igh t  c o n e ;  S is s o m e  c o m p a c t  s p a c e  w i t h  s p a c e l i k e  met r ic .  

(2) T h e  m e t r i c  o f  X 4 is i n d u c e d  f r o m  the  m e t r i c  o f  t he  space  H 
( E i s e n h a r t ,  1964). 

(3) T h e  i s o m e t r i e s  o f  t he  space  H act  as s y m m e t r i e s  o f  the  t h e o r y ;  the  

c o n s e r v a t i o n  l aws  o f  f o u r - m o m e n t u m  a n d  a n g u l a r  m o m e n t u m  f o l l o w  f r o m  
the  i s o m e t r i e s  o f  t he  M 4 fac tor .  
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824 Pitk~nen 

In the first paper of the series we introduced the basic theoretical 
framework, which underlies this paper. The basic ideas of the TGD approach 
are (Pitk/inen, 1981, 1983): 

(1) The isometries of the space S correspond to color isometries; the 
space CP2 turns out to be a promising candidate for the space S (Eguchi 
et al., 1980; Gibbons and Pope, 1978; Hawking and Pope, 1978). 

(2) Both color and gravitational interactions couple to the isometry 
charges of the space H;  as a consequence one can relate gluonic field 
variables to the induced metric in X 4 and derive a relationship between 
color and gravitational couplings. 

(3) The electroweak gauge potentials are obtained by inducing spinor 
connection of the space S to the surface X4; thus a geometrization of 
electroweak gauge potentials (Weinberg, 1967; Salam, 1968; Glashow, 1961) 
is achieved. 

(4) The notions of particle and 3-space are generalized. Practically any 
action constructable from local coordinate invariants of X 4 allows stringlike 
objects, that is, surfaces, which are Cartesian products of a minimal surface 
of Minkowski space and of a geodesic sphere of the space S, as its extremals. 
The identification of these stringlike objects as hadrons and the ensuing 
generalization of the string model (Nambu, 1970; Anderson et al., 1983; 
Chew and Rosenzweig, 1978; Schwartz, 19 ) can be summarized into the 
statement that free particle corresponds to a compact 3-manifold. 

As a consequence one obtains a topological description of particles 
and particle reactions. In particular, a topological explanation of the family 
replication phenomenon (Fritsch and Minkowski, 1975; Georgi, 1975) emer- 
ges. This assumption reduces the unification problem to the level of one 
fermion family in the sense that the quantum numbers to be explained by 
the geometric properties the space H are those associated with a single- 
particle generation. 

Moreover, when the dimension of the space H is small enough, a 
mechanism generating the classical 3-space exists. Classical 3-space with 
matter corresponds to an approximately fiat 3-surface of macroscopic size 
to which the particle like 3-manifolds are "glued" as topological 
inhomogeneities. 

It was found that the space CP2, the projective space of two complex 
dimensions (Eguchi et al., 1980; Gibbons and Pope, 1978; Hawking and 
Pope, 1978) is a unique candidate for the space S once the above ideas are 
accepted. 

Two basically different dynamical scenarios turned out to be possible 
in the CP2 framework. In the first senario, the leptonic spinors are the only 
elementary fermion fields and quarks correspond to leptons in pseudo triplet 
color partial waves. The fractional electromagnetic charges result from the 
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anomalous hypercharge YA = 2Qcm associated with these partial waves. In 
the variants of the second scenario either leptons and quarks or only quarks 
are elementary fermions. 

The following results related to the description of the electroweak 
interactions in TGD framework were found. 

(1) TGD framework provides a geometrization of the Higgs field 
concept. 

(2) The transition to the so-called unitary gauge, where the charged 
components of the Higgs field vanish, shows that the requirement "mass 
splitting occurs and neutrinos are massless" leads to a unique CP-breaking 
term in Dirac action. 

(3) A dualism exists between the phenomena of symmetry breaking 
and confinement. The confinement occurs in the sense that the field quan- 
tities in the unitary gauge (uniquely defined, when Higgs field is nonvanish- 
ing) can be regarded as SU(2)L singlets build as local composites of the 
gauge fields, spinor fields and of the Higgs field normalized to unity. Thus 
physical particles belong only apparently to SU(2)L gauge multiplets and 
it is easy to understand the mass splittings between them. 

Alternatively, one can say that symmetry breaking occurs since physical 
particles correspond to field quantities in a physically preferred gauge, the 
unitary gauge. 

In this paper we study the dynamics of the theory in semiclassical level. 
In the first section we formulate the concept of classical space time as a 
length-scale-dependent concept and introduce the concept of the length- 
scale-dependent effective action (Iztykson and Zuber, 1980; Amit, 1975). 
Moreover, we derive under certain conditions Einstein equations (Migner 
et al., 1975; Adler et al., 1975) for the S-condensed matter. 

In the second section we formulate the constraints that the length-scale- 
dependent bosonic effective action should satisfy (dependence on length 
scale through the coupling constants only, locality, presence of only first 
derivatives, minimally broken conformal invariance) and show that the 
symmetry-breaking Yang-Mills action satisfies these constraints. 

We will show that solutions of Einstein-Yang-Mills equations define 
a set of extremals of the effective action. Explicit expression for the various 
terms appearing in the action will be derived and the general properties of 
the action will be considered. Finally, the extremals of this action will be 
studied in detail. The motivation for this rather technical section is that the 
results obtained will be used in the remaining sections of the paper. 

In the third section we shall consider the general features of the coupling 
constant evolution. It will be found that the requirement that effective action 
reproduces Maxwell electrodynamics at long length scales leads to SU(2)L 
confinement picture: at the limit of long length scales Weinberg angle [and 
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the inverse of SU(2)L coupling] must vanish. This scenario is in accordance 
with the previous observation that the concepts of SU(2)L confinement and 
SU(2)L symmetry breaking are dual to each other. 

Also it will be found that the approximate canonical invariance of the 
effective action in the "Maxwellian phase," in which the SU(2)L coupling 
diverges, provides an explanation for color confinement (Susskind and 
Kogut, 1976; Brander, 1981). Thus the phenomena of color and SU(2)L 
confinement seem to be closely related in TGD framework. Of course, the 
possibility to derive color confinement by studying Maxwell action (1) can 
be regarded as a demonstration of unifying power of the TGD approach. 

Finally, the properties of the theory at short length scales will be 
considered and it will be found that a transition to "minimal surface phase" 
probably occurs. In this phase particlelike space-times (minimal surfaces) 
with vanishing Higgs field dominate the functional integral and the concept 
of continuous macroscopic spacetime becomes meaningless. 

In the fourth section we consider the cosmological consequences of 
TGD approach. We show that the choice H = M4+ x CP2, where M4+ is the 
light cone of Minkowski space provides a possible solution to the horizon 
problems (Weinberg, 1972) of the standard cosmologies and that the cos- 
mologies imbeddable to H have mass density smaller than the so-called 
critical mass density (Fall and Lynden-Bell, 1981) based on extremals of 
the effective action, which we call spiral cosmic strings [analogous objects 
are encountered also in the context of grand unified theories (Zeldovich, 
1980)-I. 

NOTATIONS 

Symbol 

H = V x S  

M4/ M 4 
CP2 
hk/mk/s k 
,~k, (k, k = 1, 2 
x~/~  H 

hkl~l ~ k mlo~/ Slo~ 

hk~/ mkt/ Ski 
A 

ek 

Meaning 

Imbedding space, which is Cartesian product of V 
and S 

Minkowski space/light cone of Minkowski space 
Complex projective space of complex dimension 2 
Coordinates for space H~ M4/S 
Complex coordinates for C P  2 

Coordinates for the interior/boundary component of 
a submanifold X n 

Partial derivatives of the coordinate variables of 
H/M4/S  with respect to the coordinate variables 
of X 

Components of the metric tensor for H/M4/S  
Components of the vielbein in H 



Topological Geometrodynamics. II 827 

Vk/ Bk/ Ak 

g~ = hklhk hll~ 
V~/B~/A~ 

H}r = D~h~r 
H = g~ 'H~ 
Fk 
F~ = Fkhf~ 
~A/~AB = [~A, TB]/4 
Fk/F~ 
Dk/ D~ 
X ~ 
Int X ~ 

Components of vielbein connect ion/Kahler  potential 
in CPz/spinor connection in H 

Curvature form of vielbein connect ion/Kahler  
form/curvature form of spinor connection 

Induced metric in X"  
Induced vielbein connect ion/Kahler  potential/  

spinor connection in X n 
Second fundamental form for X ~ 
Trace of the second fundamental form 
Gamma matrices for the space H 
Gamma matrices for X n 
Flat space gamma/sigma matrices for space H 
Modified gamma matrices of the space H/X"  
Covariant derivative in H / X  ~ 
n-dimensional submanifold of H 
Interior of X"  
ith boundary component  of X"  

2. TGD DESCRIPTION OF MATTER AND SPACE-TIME 

In this section we shall formulate the concepts of classical space-time 
and matter in TGD. In the first subsection we formulate a length scale 
dependent definition of the classical spacetime as an extremal of a length 
scale dependent  effective action. In the second subsection we formulate the 
TGD description of matter, derive Einstein equations for the "classical 
matter" and derive variational principle having as among its extremals the 
spacetimes satisfying Einstein equations. 

2.1. A Classical Space-Time as Length-Scale-Dependent Concept 

In field theories one defines the concept of the classical field always 
with respect to some reference length scale L. The procedure for defining 
the "classical field in length scale L"  is roughly the following: 

(1) Cutoff procedure is defined as a procedure uniquely attaching to 
a given field configuration (Iztykson and Zuber, 1980; Amit, 1975): 

�9 (x) = J ddk exp(ik,  x)r~(k) (1) 

the cutoff field eL, which is "trivial" in the length scales smaller than L. A 
possible definition of the cutoff procedure is the following one: 

�9 (x)-+d?L(X)=Z(L) ~ ddkexp(ik �9 x)r (2) 
,J k >I/L 
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The procedure means simply the dropping of all Fourier components with 
wave vector satisfying the condition k > 1 / L and renormalization of the field. 

(2) The concept of the length-scale-dependent effective action SL is 
defined. Roughly, St is obtained via the following procedure: 

(a) The quantity exp(iS), where S is the bare action defining the theory 
is averaged over all field configurations having the given cutoff configuration: 

AL exp(iSL) = / [[ daP(k) exp(iS) (3) 
Jk > I / L  

Here the quantities AL and St are real and AL is absorbed into the integration 
measure over the field configurations trivial in length scales smaller than L. 

(b) The phase St is identified as the length-scale-dependent effective 
action. 

Provided the saddle point approximation can be applied to the calcula- 
tion of remaining functional integral over Fourier components satisfying 
the condition k < I/L, the extremal of St can be identified as classical field 
in length scale L. 

The generalization of the cutoff procedures to TGD context should be 
coordinate invariant and thus should have purely geometric description. If 
one can define a procedure, which associates a uniqtie cutoff space time 
"trivial" in length scales smaller than L then one obtains a cutoff procedure 
for the induced fields as a byproduct. The existence of the cutoff procedure 
is however questionable. The following approach seems more natural. 

(1) One can define what the addition or subtraction of a detail smaller 
than L the space-time means. One simply performs a deformation of 
space-time, which is contained in a set of M 4 having volume L 4. This 
deformation can lead to a different topology. Observe that this procedure 
is well defined also in the configuration space consisting of spacelike 
3-manifolds. 

(2) It is natural to define two space-times to be equivalent in length 
scale L if they can be obtained from each other through a finite number of 
deformations of size smaller than L. The equivalence class X 4 formed by 
equivalent space-times corresponds to the cutoff field configuration of the 
conventional field theories. The set of the equivalence classes, which corre- 
sponds to the space of cutoff fields, might be called the configuration space 
modulo details smaller than L. 

(3) The effective action in length scale L can be defined as a functional 
defined in the set of these equivalence classes by averaging the bare action 
over the four surfaces belonging to the equivalence class X4: 

fx exp(iS) (4) AL exp(iSL) = %x~ D X  4 

As a consequence the functional integral defining the theory can be 
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expressed in the form 

f DX exp(iSL) (5) 

Here the factor AL is absorbed into the integration measure over details 
smaller than L. 

(4) It would probably be difficult to do any practical calculations in 
the space of the equivalence classes X 4. One can however extend the 
effective action to a functional in the original configuration space having 
the property that it is constant inside each equivalence class. Of course, the 
integration measure DX 4 in the functional integral must be divided with 
the volume of the equivalence class X 4. 

The extremals of this action have a characteristic degeneracy resulting 
from its constancy inside the equivalence classes X~. Any extremal of this 
action can be called a classical space-time trivial in the length scales smaller 
than L and the associated induced field quantities are the analogues of the 
cutoff fields of the conventional field theories. 

2.2. TGD Description of Matter 

The phenomenon of ~ condensation is a mechanism, which in a certain 
sense generates classical space-time with matter. The essential features of 
the phenomenon are the following: 

(1) In the presence of a surface X 4, representable as a graph of some 
map M4--> S and having large enough size, the particle like 3-surfaces 
"collide" with these surfaces with a high probability provided the dimension 
of the space H is sufficiently small (dim H < 9). 

(2) Under certain circumstances we expect that the particles get "stuck" 
to the surface X 3 so that something resembling classical 3-space with 
particles appearing as topological inhomogenieties emerges. 

(3) It seems natural to identify the many-particle states formed as 
bound many-particle states. This would mean the identification of gravita- 
tionally bound many particle states as well as quantum mechanical bound 
states (molecules, atoms, nuclei, hadrons) as ~ condensates. 

(4) If  this interpretation is accepted one obtains a thermodynamical 
criterion for the occurrence of the ~ condensation: particles in $ condensate 
are stable against "~ evaporation" provided the temperature is smaller than 
the binding energy of the particle. 

Accepting this general picture one must take the length-scale-dependent 
description of matter into account in three different contributions to isometry 
currents. These contributions correspond to the isometry currents associated 
with the long-range fields, with the W-condensed matter and with the free, 
non-W-condensed particles ("vapor phase"). 
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The form of  the vacuum contribution, which physically corresponds 
to the contribution of fields having range larger than the length scale, is 
determined by the form of the length-scale-dependent effective action. We 
denote the corresponding tensor by Tff .  In general the ~-condensed matter 
creates long range fields and interacts with them so that this tensor is not 
divergenceless as it is for the extremals of  the length-scale-dependent 
effective action. 

The #-condensed particles of size smaller than L can be described using 
energy momentum tensor T~ 'k. We shall denote by the symbol T ~k the sum 
of these two energy momentum tensors: 

T ~k= T~ k + T~ k (6) 

Since the total energy momentum flow must be parallel to the surface X 4, 
this tensor is parallel to the surface X~ as a vector of  H and thus can be 
written in the form 

T "k= T'~hk~ (7) 

The associated isometry current is obtained by contracting with the 
infinitesimal generator of isometry. 

The free particles must be described by an energy momentum tensor 
T kt definecl in H, which clearly has no counterpart  in GRT. Contractions 
with the generators of  isometries give the isometry currents. 

The currents T '~k and T k! a r e  not conserved. Their divergences must 
however be orthogonal to the surface X~ since the flow of the various 
quantum numbers between the condensed phase and "vapor  phase" is 
orthogonal to the surface X~. 

From the conservation of isometry currents one obtains the condition 

= f d4x 8(h k, h k ( x ) ) D , T  "k (8) OtT kl 

Since both sides are orthogonal to the surface X 4 as vectors of  H, the 
quantity J 

D,~T '~k = D,~T'~hkll 3 + T"~Hk~ (9) 

must be orthogonal to X 4. 
The term proportional to the second fundamental form satisfies this 

condition but  the first term does not unless the tensor T "~ is divergenceless: 

Dt~T '~ = 0  (10) 

By the well-known arguments (Misner et al., 1975; Adler et al., 1975) one 
finds that the tensor T ~ must be expressible as a linear combination of  
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the metric tensor and Einstein tensor associated with the space X~: 

T ~ = KG "~ +Ag ~ ( l l a )  

Thus we have derived Einstein equations for the ordinary matter assuming 
only that the pointlike particles in length scale L consist of two phases: the 
condensed phase and vapor phase. Of course, the conservation of isometry 
charges is an essential ingredient in the proof. 

The remaining equations should govern the interaction between the 
vacuum and Y-condensed matter. It seems natural to describe the ~- 
condensed matter as external Yang-Mills currents coupled to long-range 
fields. Thus these currents act as sources for the long-range fields so that 
Yang-Mills equations 

DoF ~ =j~ ( l l b )  

should be satisfied. 
As is well known, the ordinary Einstein equations can be derived from 

a variational principle. Also now the above-derived conclusions follow from 
a variational principle. The variational principle is obtained in an obvious 
manner: add to the effective action S curvature scalar part and source term 
describing the effects of  S-condensed matter to the surrounding vacuum. 

The action principle can be written in the form 

s = f  Ld4x  

L = (LL+ KR)(--g)~/2+ T~og ~ + Tr ( j~A. )  (12) 

T =  ~ k T~khl~ 

Here LL is the Lagrangian associated with the long-range fields, R denotes 
the curvature scalar, T~k and j~ are the energy momentum and Yang-Mills 
currents associated with the Y-condensed matter, and As denotes the induced 
Yang-Mills connection in X 4. 

We shall show later that when the bosonic effective action is of Yang- 
Mills type, the resulting field equations are solved identically by the ansatz 

T~t3 ..~ T,~ :_,.,W2 = KG,~t3(_g)l/2 (13) 

j~ = Dr162 ~/2 (14) 

D, Tg k = -Tr(  D~F~r f , ) ( -g)  ~/2 (15) 

We shall later find that field equations allow also more general solutions 
implying a departure from the Einstein equations. 

Summarizing, we have derived the Einstein equations for the ordinary 
matter essentially from the requirement that energy momentum is conserved 
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and found them to be derivable from an action principle. We do not however 
believe that this action has any fundamental role in the definition of the 
theory, since it describes the g-condensed matter as external currents. Rather, 
the bosonic effective action SL (not containing the curvature scalar) might 
have something to do with quantum theory. 

An important departure from the GRT picture is the assumption about 
the presence of the matter consisting of free particles. The assumption of 
this form of matter is natural in TGD context and also necessary in order 
to obtain Einstein equations together with overall energy momentum con- 
servation. We shall show later that this departure might solve some basic 
problems of the standard big bang cosmology. 

3. MODELING THE BOSONIC EFFECTIVE ACTION 

In the following we shall study a model for the bosonic effective action 
based on some simplifying assumptions such as locality and presence of 
only first-order derivatives. We shall derive explicit representation for the 
field equations describing the dynamics of the g-condensed matter interact- 
ing with the long-range fields and show that the solutions of Einstein 
equations are solutions of the equations thus obtained. 

In the remaining sections we shall study the properties of the bosonic 
effective action in more detail; as a motivation for these rather technical 
considerations is that the results can be used in the subsequent sections. 
We derive explicit form for the action and show that it allows two non- 
equivalent Abelian "subtheories." An expression for the Weinberg angle in 
terms of the parameters appearing in the action will be derived. 

In Section 3.3 we study the properties of the pure U(1) action to which 
the bosonic effective action reduces in the limit of vanishing Weinberg angle 
and show that it has to a good approximation the properties of the Maxwell 
action and that its characteristic property is its enormous vacuum 
degeneracy. In addition the extremals of the bosonic effective action will 
be studied. 

3.1. Constraints on the Choice of  the Effective Action 

Our basic assumptions about the properties of the bosonic effective 
action are the following ones: 

(1) S is constructable from local invariants, the dominant terms involv- 
ing only first derivatives of the coordinate variables of the space H and S 
is positive definite. 

(2) S depends on the length scale only via the length-scale-dependent 
coupling parameters (gauge couplings, etc.). 



Topological Geometrodynamics. II 833 

(3) Effective action breaks conformal invariance minimally in the sense 
that the effective action contains only dimensionless coupling parameters 
and the covariant field quantities appearing in the action are dimensionless. 

As far as we know, the most general action satisfying these conditions 
is symmetry breaking Yang-Mills action, which is a superposition of the 
two invariants. The first invariant is given by 

/1 = T r ( F ~ F ~ )  (16) 

Here F denotes the projection of the curvature form of the spinor connection 
of CP2 and I~ can be identified as the symmetry conserving part of the 
effective action associated with electroweak interactions. The second 
invariant is given by 

12 = J ~ J ~  (17) 

J is the projection of the Kahler form of CP2 identifiable as U(1) gauge 
field and the presence of this invariant reflects the "occurrence" of elec- 
troweak symmetry breaking implying different evolution for U(1) and 
SU(2)L couplings at low energies. 

Summarizing, the effective action to be studied in the sequel is symmetry 
breaking YM action 

L = -(1/4g2)I~ - f I 2  (18) 

where g and f are length-scale-dependent dimensionless parameters. 
It is important to notice that the presence of Higgs term constructed 

from the components of second fundamental form and from their covariant 
derivatives might in principle be present in the action. We will later find 
that the presence of Higgs term is not excluded at sufficiently short length 
scales. 

3.2. General Form of  Field Equations 

The action which we believe to give an approximate description of 
matter in TGD is given by 

S =  I L d 4 x  

L = (LL+ ~cR)(-g) ' /2+ "r* . , ~  . . . .  ~,~t3s + Tr(j ,A~)+JI~B~ (19) 

T ~  ~ k = T,~khl~ 

Here LL is the Lagrangian associated with the long-range fields derived in 
the preceding section and R denotes the curvature scalar. ~ "~ T~k, J~, and j ~  
are the energy momentum and Yang-Mills currents associated with the 
Y-condensed matter; they are not regarded as dynamical variables but 



834 Pitkfinen 

external currents. A~ and B~ denote the induced Yang-Mills connection 
and Kahler potential respectively. 

Field equations are most easily derived by using Lagrange multipliers 
for the induced field quantities g~t3, A~, and B~. This is accomplished by 
regarding these field variables as primary dynamical variables and by adding 
to the action the following Lagrange multiplier terms taking care of the 
constraint conditions 

Sc = I Lc dnx (20a) 

Lc = Tr(J~(a~ - akh kl ,~ ) + J ~ ( Bo~ - Bkh ko, ) + T ~  ( g,~t3 - hkth ko, h tlt3 ) (20b) 

Here the variables T~ ~, J'~, and J1 are regarded as auxiliary dynamical 
variables. 

Varying with respect to all dynamical variables one obtains the field 
equations, which read 

[T~r T~et~_ KGO, O(_g)t/2]H~t3 + Tr( (jo~ _j~:~)Ft[)h tlo, + (j,~ _jl.~)jl.a k hlo~l 
�9 a s .o~ s k + (Tr(j F,~) +J1J~,)hlt3 - D,~T'~ k = 0 (21a) 

Here the tensor T~. ~ is the canonical energy momentum tensor associated 
with the symmetry broken Yang-Mills action 

T~t 3 = - (1 /4g 2) Tr(F~F r~ - (g '#3 /4 )F .VF. . ) ( -g ) I /2  

- 4 f ( J ~ J  ~'t~ - ( g~ /4 ) JU~J .~ ) ( -g )  ~/2 (21b) 

The currents j and j are the canonical currents associated with the Yang- 
Mills action and Kahler action 

j"  = (1/ g 2)Dt3F'~t3 ( - g )  ~/2 (22a) 

j~ = 4 fD~J~ ( - g  ) ~/2 (22b) 

From the form of these equations it is clear that the solutions of Einstein- 
Maxwell equations 

T~/~ + T~ ~ = KG'~t3(-g) 1/2 (23a) 

j"  =j~ (23b) 

. . . .  (23c) J1 -=Jl*~ 

Do~rg k = -(Tr(j~F~) + j~ J~)h ft3 (23d) 

form a rather general set of solutions to these equations. 
The physical content of the first three equations is obvious. The last 

equation states that the covariant divergence of the energy momentum 
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tensors associated with ~-condensed matter and long-range fields have 
opposite covariant divergences; this is a necessary condition for Einstein 
equations to hold true. 

Of course, the imbeddability requirement (gauge fields are induced) 
sets constraints on the form of the currents j~ and T~ k. On the other hand, 
any surface defines a solution of the field equations provided the associated 
Einstein tensor satisfies certain reasonability conditions (energy density 
must be positive definite). 

It is clear, that these equations allow also more general solutions: in 
particular solutions for which Einstein equations do not hold. We shall 
later consider solutions of  this type. 

3.3. General Features of the Action 

In this Section we shall study the general properties of the effective 
action. After necessary preliminaries (giving explicit representations for the 
various tensor quantities appearing in the action) we derive expression for 
Weinberg angle, show the existence of two Abelian "subtheories" and show 
that the pure Kahler action (Weinberg angle vanishes) has the properties 
of Maxwell action. 

3.3.1. The Explicit Representation of the Action 

The induced Yang-Mills field is the projection of the curvature form 
F of the spinor connection (Pitk~inen, 1981, 1983). In the sequel we shall 
assume the following general form for the spinor connection 

A = V +  B( n+ l+ +  n_ l_ ) /2  (24) 

Here V and B denote the vierbein and Kahler connections of  CP2, respec- 
tively. The matrices 1+ and 1_ project to the subspace of spinor with H 
chirality +1 and -1 ,  respectively. 

Using the explicit representations of  V and J (Appendix) and the 
definition of  the invariant 11 given by the formula (16) one obtains for the 
invariant/1 the representation 

I1 =Eel~ d(e) (25) 

where the factor d(e) is equal to 1 or 0 depending on whether the fermions 
with the chirality e are elementary fermions or not. 

The contribution of  a single chirality is given by the expression 

11 = 8(X((eo A e3)2+ (el A e2) 2) + 64(eo A e3, e I A e2) 

+ 2(e0 A el -- e2 6 e3)2+ 2(eo ̂  e2 -- e3 A el) 2) (26) 
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where the coefficient of  X of the term depending on the coupling to the 
Kahler potential is given by 

X = 31 + n~ (27) 

Here we have used the same notation for the projections of  the vielbein 
components as for the vielbeins themselves (the product  A ^ B, when written 
explicitly gives the tensor (A,~Bt3- At3B,~)/2). 

The explicit representation of the invariant I2 is given by 

/2 = 4(e0 ̂  e3+ el  ^ e2) 2 (28) 

The curvature tensor of X q is given by 

R,~,~ = R~k~hl~hl~hi ~ k~,ha~t + hk~(H~,~,H~k t _ H~,H,,~)k t (29) 

has two parts. The first part is simply the projection of the curvature tensor 
of  H and results from the curvature of the imbedding space. The second 
term involving second fundamental form is always present. 

3.3.2. The Abelian Subtheories 

In a pure gauge theory with gauge group G the restrictions of the gauge 
potential to a subgroup H of  G defines a "subtheory"  with gauge group 
H in the sense that field equations satisfied by the restricted gauge potentials 
and by those of H gauge theory are identical. 

In TGD an analogous phenomenon occurs for any action constructable 
from local invariants. The role of the subgroup H is taken by the so-called 
geodesic submanifold H e  c H with the defining property that the geodesics 
of  H (with respect to the induced metric) are geodesics of H also. This 
requirement implies that the second fundamental form associated with this 
imbedding vanishes (Helgason, 1978): 

= o ( 3 0 )  

The reason for the special dynamical role of  the geodesic submanifolds is 
that induction procedure yields the same bosonic field quantities indepen- 
dently whether it is performed directly ( I :  H - )  X)  or in two steps) I :  H ~  
H ~ X ) .  

It is evident that the geodesic submanifolds of H = M 4 • S of dimension 
larger than 1 are Cartesian products of  the geodesic submanifolds of M 
and $, respectively, and that the geodesic submanifolds of  M are hyper- 
planes of  dimension 0, 1 , . . . ,  4. 

In order to find the geodesic submanifolds of  the space S = CP2 we 
can use the fact that CP2 is symmetric space, i.e., representable as a coset 
space of  some group: CPz = S U ( 3 ) / S U ( 2 )  • U(1). For symmetric spaces 
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(or equivalently constant curvature spaces) the geodesic submanifolds are 
describable in Lie-algebraic terms (Helgason, 1978). 

Theorem. Let M be a symmetric space: M = G/H of the group G and 
H c G. Identify the tangent space T of M at a given point m as a subspace 
of the Lie algebra of G in the usual manner (the orthogonal complement 
of the subspace spanned by the Lie-algebra generators of H). Let S c T be 
a Lie triple system satisfying the defining condition 

[x,[Y,Z]]~s, vx,  Y,Z~S (31) 

Then S defines a geodesic submanifold of M via the exponential mapping 
exp: s -> exp(s) c M. 

The obvious Lie triple systems contained in CP2 tangent space are the 
whole tangent space and the subspace defined by one Lie-algebra generator: 
the corresponding geodesic submanifolds are CP2 itself and a geodesic line 
of CP2. 

The remaining Lie triple systems are easily found in the "particle 
representation" of SU(3) Lie algebra. In the representation of SU(3) 
Lie-algebra as meson octet (~r, K, r/) the tangent space of CP2 corresponds 
to the space spanned by strange mesons: T = (K +, K- ,  K ~ It is easy 
to verify that the following two subspaces 

(K +, K-)  (32a) 

(K o, go) (32b) 

are nonequivalent [not related by an automorphism of SU(3) Lie algebra)] 
Lie triple systems and that there are no three-element Lie triple systems. 

Thus we can conclude that CP2 allows two nonequivalent geodesic 
submanifolds; the corresponding Lie-triple systems correspond to two non- 
equivalent three-dimensional subalgebras of SU(3) Lie algebra, which 
integrate to the groups SU(2) (2• unitary matrices) and SO(3) (3 • 
orthogonal matrices) of SU(3) (3 x 3 unitary matrices), respectively. 

Convenient representatives for the geodesic submanifolds (spheres in 
fact) are defined by the equations 

I: ~ =  s ~2 (0= 7r/2, qb=0) (33a) 

II: ~1= (2 (0 = ~-/2, qs =0) (33b) 

The nonequivalence of these submanifolds is clear from the fact that the 
isometries of CP2 act as holomorphic transformations of CP2. The vanishing 
of the second fundamental form is easy to verify by a direct calculation. 
We shall refer to these geodesic spheres as S 2 and S~, respectively. 
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It is advantageous to use the ordinary spherical coordinates for S~ (S~I) 
instead of the coordinates (r, if) [(r, qb)]. The relationship between these 
two coordinate sets is 

I: cos 0 = 2(1 + r2) -1 - 1 II: cos 0 = +(1 + r2) 1/2 
(34) 

4, = , / , /2  = r 

In these coordinates the line element is given by 

ds 2 = R2(dO 2 + sin 2 0 d~b2)/4 (35) 

Both geodesic spheres have the same radius since CP2 allows geodesic lines 
of  one type only. 

The nonvanishing components of the curvature form of the spinor 
connection are given by 

R o 3  = 2R12 = 4e ~ A e 3 = - d u  ^ dd~ (36) 

and by 
R o 2  = - R 3 1  = e~ e 2= du ^ dqb/2 (36b) 

in the cases I and II, respectively. 
The S 2 restrictions of  the invariants/1 a n d / 2  are proportional to the 

invariant 

I = (du ^ d(a) 2 (37) 

A convenient representation for the proportionality constants is in the form 
of the matrix 

Ik( S~) = n~kI (38) 

The general form of this matrix is given by 

n, I nii/-~- ( x 1/04 ) (39) 

Here the quantities X and Y depend on the coupling to the Kahler potential 

/ x \  , ,  , / ( 3 1  + 
(40) 

The meaning of the factor d(e )  should be already familiar. 

3.3.3. The Evaluation o f  Weinberg Angle  

In the first paper of  the series (and already in Pitk/inen, 1983) we 
demonstrated that the requirement "Photon couples vectorially" leads to 
the coupling structure of the GWS model of  the electroweak interactions 
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(Weinberg, 1967; Salam, 1968; Glashow, 1961); the value of the Weinberg 
angle remained however an undetermined parameter.  

Here we want to show that the value of the Weinberg angle can be 
fixed uniquely by requiring that the Yang-Mills  part  of  the effective action 
contains no nondiagonal  terms that are terms of the form "/Z ~ 

To evaluate the value of the Weinberg angle we express the neutral 
part  of  the induced gauge field Fnc 

Eric = 2Ro3 ~~ + 2 R 1 2 ~ 1 2  q - J/2(n+l+ + n_l_) (41) 

where we have 

Ro3 = 2(2e ~ ̂  e 3 q- e 1 ̂  e 2) 

R12 = 2(e ~ ̂  e 3 + 2e 2 ̂  e 2) (42) 

J = 2 ( e ~  e3+e  I ^ e 2) 

in terms of  the fields , / a n d  Z ~ 

Fnc = "YQem q-- Z ~  - PQem) (43a) 

p = sin 20w (43b) 

Here we have 

Qem = ~12+ (n+l+ + n_l_) /6  

13 = (~;,2- ~o3)/2 (44) 

Evaluating the expressions (43) and (44) one obtains for 7 and Z ~ the 
expressions 

3/= 3 J + pRo3 
(45) 

Z ~ = 2Ro3 

For the Kahler  field one obtains 

J = (T -PZ~ (46) 

Expressing the neutral part  of  the symmetry broken Yang-Milis action in 
terms of  y and Z ~ one obtains for the coefficient of  yZ  ~ cross term the 
expression 

X = -K/2g2+fp/18  (47a) 

K = T r ( O e m ( I  3 - P Q e m )  (47b) 

In the general case the value of the coefficient K is given by 

K = s - (18 + 2n~)p/9) d(e) (48) 
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where the sum runs over the H chiralities (d(e)) equals to 1 or 0 depending 
on whether elementary fermions with the corresponding chirality are 
assumed to be present in the theory. 

The cross term vanishes provided the value of  the Weinberg angle is 
given by 

p = sin 2 0~ = gee  d(e)/(fg2+ ~e d(e)(18+2n~)) (49) 

In the scenario in which only leptons are elementary fermion (n_ = 3) the 
value of  the Weinberg angle is given by 

p = 1/(4+fg2/9) (50) 

The bare value of the Weinberg angle in this scenario is equal to 1/4 and 
is remarkably close to the measured value of  this parameter (p = 0 .23. . . ) .  
Since this scenario is the simplest the result is rather encouraging. In other 
scenarios ((n+, n_) = (3, 1) or (0, 1)) the values of  the Weinberg angle are 
larger but differ somewhat from the value 3/8 encountered in many GUT's  
(Fritsch and Minkowski, 1975; Georgi, 1975). 

3.3.4. Properties of the Kahler Action 

The properties of the Kahler action are interesting since the requirement 
that effective action produces Maxwell electrodynamics at long length scales 
might be satisfied provided the effective action reduces to a pure Kahler 
action at this limit; this of course implies the vanishing of the Weinberg 
angle at this limit and thus a phenomenon,  which might be called SU(2)L 
confinement. 

In what follows we shall show that (1) any Maxwell field is representable 
locally as an induced Kahler field, (2) Kahler action is characterized by an 
enormous vacuum degeneracy, and (3) the canonical transformations of 
CP 2 leaving the Kahler form of CP2 invariant are approximate symmetries 
of  the U(1) action and the action of a canonical transformation on covariant 
Kahler field is equivalent to the action of  a U(1) gauge transformation. 

The local representability of an arbitrary Maxwell field defined in M 
as an induced Kahler form follows from the representability of any U(1) 
gauge potential A(m) in the form 

A = ~,kPk dQ k, k = 1, 2 (51a) 

Here Pk and Qk, k = 1, 2 are some functions of the Minkowski coordinates 
(Gliozzi, 1978). This property is of course shared by the Kahler potential B: 

B=~.kPkdq k, k = l , 2  (51b) 

as can be checked directly from the representation of  the Kahler potential 
in the standard gauge. 
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Clearly, the map 

( Pk, q k) = ( Pk, O k) (52) 

defines the required local imbedding of a given Maxwell field in M 4 as a 
four surface, representable as a graph of a map M 4 ~  CP2. 

The imbedding is not unique; any canonical transformation of CP2 
leaving the Kahler form J invariant leaves also the induced U(1) gauge 
field invariant and thus its action is equivalent to that of aU(1)  gauge 
transformation. 

The vacuum degeneracy is not a property of  a pure U(1) action only; 
already the Yang-Mills action has quite a large vacuum degeneracy. Regard- 
less of the values of the coupling parameters all the surfaces X 4 c  M 4 x D 1, 
where D 1 is an arbitrary one-dimensional submanifold of CP2, are vacuum 
extremals of  pure Yang-Mills action. 

The reason for this circumstance is that the induced Yang-Mills field 
vanishes identically (because of the antisymmetry the projection of  Yang- 
Mills field to any one-dimensional submanifold vanishes). 

The vacuum degeneracy associated with the pure Kahler action is 
however much larger; any surface X 4 c M 4 x  y2, where y2 is a two- 
dimensional submanifold of CP2 with the property that the projection of  
the Kahler form on y2 vanishes, is a vacuum extremal. Clearly, the Kahler 
form is pure gauge on these submanifolds. 

One can determine these surfaces using the canonical representation 
of  the Kahler potential. For example the surfaces representable as maps 

Pk =aF/OO k (53) 

where F is an arbitrary function of the variables Qk, defines a surface of 
required type. From the vacuons of type I and II, "elementary vacuons," 
one can build more complicated vacuum extremals by gluing them together 
along their boundaries. Of course, the obvious continuity conditions must 
hold true on the boundaries. 

Of course these solutions are not vacuum extremals of the whole action. 
Rather, canonical transformations act as dynamical symmetries of  the 
Einstein-Maxwell action provided the energy momentum tensor of the 
~-condensed matter is allowed to change in the transformation so 
that Einstein equations remain true. Thus these symmetries transform 
electromagnetically equivalent dynamical evolutions to each other. 

3.4. About the Extremals  of  the Effective Action 

In the sequel we shall show that the effective action allows as its 
extremals (1) Schwarzschild- and Reissner-N6rdstr6m exterior metrics 
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(Misner et al., 1975; Adler et al., 1975), (2) several types of  stringlike objects, 
(3) a rather large family of  massless fields, (4) minimal surfaces with 
vanishing Higgs field. 

3.4.1. Imbedding Certain Metrics 

Both Schwarzschild- and Reissner-N6rdstr6m exterior metrics are 
imbeddable as vacuum extremals of the pure Kahler action to M 4 • S2i. Of 
course, the Reissner-N6rdstr6m solution defines a nonvacuum solution of 
the whole action in the sense that the energy momentum tensor of ~- 
condensed matter is nonvanishing. The Reissner-N6rdstr6m metric can be 
inbedded also to M a x  S2; the requirement that the energy momentum 
density associated with the Kahler action is smaller than the total energy 
density gives an upper bound for gravitational constant. 

We shall use the ordinary spherical coordinates (0, ~b) for S~; standard 
spherical coordinates (m ~ rM, 0M, (hM) for M 4 and coordinates (x ~ r, 0, qb) 
for X 4. 

The imbedding can be found via the following ansatz: 

u =cos  0 = g ( r ) ,  m = A x ~  
(54) 

~bwx~  (rM, OM, qbM) = (r, O, dp) 

The interesting components of the induced metric are 

goo = - U to2+ A2 

gor = h ' -  Utof' 
(55) 

g,, = -1  - U(f ' )2 + (g,)2 

The stationarity 
constant 

h ' =  Uf '  to /4RA (56) 

The parameter A is fixed by the boundary condition goo(OO) = 1: 

X 2 = 1 + U(oo)to 2 (57) 

U = R 2 sin 2 0 

condition gor=O fixes the function h(r)  apart from a 

The interesting components of the Reissner-N6rdstr6m metric are given by 

goo = --1/grr = 1 -- a / r  -- b / r  2 (58a) 

(a, b) = (2GM,  Gcrq 2) (58b) 
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The charge parameter q is defined so that the energy density associated 
with the U(1) field is given by 

T~ = q2/ 2r 4 (58c) 

Combining the equations (55) and (58) one finds 

U = [ a / r -  b / r 2 +  U ( ~ ) t o 2 ] / w  2 (59) 

The equations (55), (57), and (59) fix the func t i o n f  apart from an integration 
constant. 

Some remarks concerning the properties of the imbedding are in order. 
(1) The imbedding is not defined for the values of the radial coordinates 

r > rc ; rc is defined by the condition 

U ( r c )  = 0 (60) 

The special case U(m) = 0 gives an upper bound for r: 

r c < ~rq2/2M (61) 

which is of  the order of  the Compton length of the particle if the charge 
parameter is of  the order of unity. 

The gauge charge associated with the solution is nonvanishing; for the 
standard representative only the W component  of  the gauge field is non- 
vanishing. In fact a mere 1 - O(1/ r )  behavior of the time component of the 
metric tensor together with the stationarity requirement implies a nonvanish- 
ing gauge charge. In fact, for the Schwarzschild solution satisfying the 
condition U ( ~ )  = 0 the gauge field has ( l / r )  1/2 behavior so that the gauge 
charge is infinite! 

The result just obtained is not a contradiction provided the action 
becomes a pure Kahler action at long length scales) ; since only the photon 
appears in the effective bosonic action the gauge charges associated with 
W ~ and Z ~ have no physical significance. Moreover, the infinite value of 
the gauge charge for Schwarzschild solution could be interpreted in terms 
of symmetry breaking. 

The imbedding of Reissner-N6rdstr6m metric to M 4 • $12 is also poss- 
ible. If  one poses the natural requirement that the energy density associated 
with the ~-condensed matter is positive definite, one obtains an upper bound 
for the magnitude of the gravitational constant from the equation 

pv  <- qZ/2r4 (62a) 

using the explicit expression for 

pv  = fJ~J~t3 = fG~rq2/ 8 R2r4 (62b) 
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and the equation 

f =  g/16~ra (63) 

resulting from the relationship between Kahler field and Maxwell field 
(y  = 3J). 

The resulting inequality is 

G <- 643R2/9 (64) 

and combined with the relationship between color and gravitational 
constants (as = 4G/  R 2) gives upper bound 

as <- 256a /9  (65) 

for color coupling strength. 

3.4.2. Stringlike Extremals 

Almost any effective action constructable from local invariants allows 
stringlike extremals 

X 4 = X  2X y 2 c M  4XCP 2 

where y2 is a submanifold of CP2, typically geodesic sphere, and X 2 is a 
surface of  M 4, usually minimal surface. 

The stringlike objects can be divided into two classes, which are (1) 
Einsteinian strings satisfying Einstein equations and (2) minimal strings; 
the simplest representatives of  this class being surfaces, for which the 
surfaces X 2 and y2 are minimal surfaces. 

Consider first the Einsteinian strings of type X 2 x y2. From the defini- 
tion of Einstein tensor in terms of Ricci tensor R ~ and from vanishing of 
the Einstein tensor for two-dimensional manifolds it follows that Einstein 
tensor is representable in the form 

G,~o = _[g,~O (X2)R( y2) + g,~O( y2)R(X2))/2 (66) 

If  Einstein equations hold one obtains for the energy momentum of the 
Einsteinian strings 

f - pk = k g~162162 dx (67) 

Here the string tension k is defined as 

k = (1/167rG) [ Rx/g d2x (68a) 
d 
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As is well known, for two-dimensional manifolds the integral of the 
curvature scalar is a topological invariant giving the so-called Euler 
characteristic of the two-manifold (Douglas, 1939) 

f Rx/g = 4~r(1 - g )  (68b) d2x 

Here the integer g is the genus of the 2-manifold (number of handles 
attached to two sphere. If  the surface y2 has boundary one must add a 
boundary term to the action in order to obtain analogous result (Pitk/inen, 
1983); the generalization of the result to the more general case is obtained 
via the replacement 

g ~ g + n/2 (68c) 

where n is the number of holes in y2. 
The vanishing of Einstein tensor in two dimensions reflects this fact. 

From the quantization rule it follows that the curvature scalar is locally a 
total divergence and thus the associated variational principle giving rise to 
Einstein equations must be identically satisfied. 

An important result is that the integral of the curvature scalar is 
nonnegative only for a rather limited set of 2-topologies if Einstein equations 
hold true (sphere, sphere with one or two holes, and torus if orientability 
is assumed). Thus it is clear that Einstein equations do not make sense for 
all topologies unless the assumption about the positivity of the total energy 
is not given up. 

Einstein equations fail to be satisfied also if the contribution of the 
symmetry broken Yang-Mills action is so large that the contribution of 
g-condensed matter to energy momentum tensor cannot be positive for 
Einstein equations to be satisfied. 

Because of their enormous string tension Einsteinian strings resemble 
the so-called cosmic strings of the grand unified theories (Fritsch and 
Minkowski, 1975; Georgi, 1975). The string tension of the grand unified 
cosmic strings is of the order 10-3/G and thus considerably smaller than 
that associated with Einsteinian strings. 

The simplest representatives for the minimal strings are surfaces X :  x 
y2 representable as Cartesian product of two-dimensional minimal surfaces 
belonging to M 4 and CPz. Thus the equations 

g~Hk~ = 0 (69) 

hold separately for each factor in Cartesian product. 
Since Yang-Mills energy momentum tensor is expressible in the form 

T ~ = ( - g ~ ( X  2) - g ~ (  Y2))LyM/4 (70) 
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its contribution to the equations of motion vanishes as a consequence of 
the minimal surface property. The contribution of Einstein tensor vanishes 
for the tensor vanishes for the same reason. Thus the equations of motion 
are satisfied provided the condition 

T ~'~ = Ag ~~ (x 2 ) + A 1 g~~ (y2) (71 ) 

is satisfied. The field equations tell nothing about the values of the "cosmo- 
logical constants" A and A1. 

The string tension of the minimal strings is given by the expression 

kM = 47rR2A + k (72a) 

k = (1/4) I LyM~/g d2x (72b) 

w h e r e  LyM is the symmetry broken Yang-Mills action. 
Particularly interesting representatives for the minimals strings are 

surfaces for which the surface y2 is a geodesic sphere of CP2. Since CP2 
allows two kinds of geodesic spheres (of type I and II) the minimal strings 
can be divided to strings of type I and type II. 

One can evaluate the contribution of the Yang-Mills action to the 
string tension by using the explicit representation of the effective action in 
U(1) subtheories. The general expression for the string tension is given by 

1 04)(1 4<~ Y f ]~r/~ (73a) 

The quantities X and Y are given by 

(X)  = e=~+~ _l d(e)( (31+42)/2 ) (73b) 

The sum runs over the H chiralities and the factor d(e) equals 1 or 0 
depending on whether the fermions with the chirality e are elementary 
spinor fields. 

The identification of the strings of type I I as hadronic strings is possible. 
The vanishing of the string tension at long length scales (1/g 2 = 0) implies 
that only the sea particles, which we identify as ~-condensed matter, 
contribute to the string tension 

k = 47rAR 2 (74) 

The resulting string tension is of the correct order of magnitude if the value 
of the "cosmological constant" is of the order of 

A = 1/R2R~2 (75) 

where R~ is of the order of baryonic Compton length. 
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The length scale determined by the "cosmological constant" A is 
roughly the geometric mean of  baryonic Compton length and Planck length 
(within factors of  10) 

L = (RHR) l/2 (76a) 

It is amusing that the "size of the electron" obtained by setting the order 
of  magnitude for the leptonic Higgs field equal to the electron mass 

Higgs ~ R /  L~ = me (76b) 

is also a geometric mean of the leptonic Compton length and of  CP2 radius 

L e ~ ( R / m e )  1/2 (77) 

The strings of  type I have enormous string tension resulting from the 
Yang-Mills part of  the action and resemble Einsteinian and thus cosmic 
strings. We shall discuss the possible cosmological role of the cosmic strings 
in the last section of the paper. 

3.4.3. Massless Extremals 

The massless extremals form a very general family of extremals charac- 
teristic to Yang-Mills action (one could add the curvature squared term to 
the action without losing these extremals). Let p and e be two M 4 vectors 
satisfying the conditions 

p . p = O  
(78) 

p . e = O  

These vectors can be interpreted as four-momentum and polarization 
vectors. Let Fk(x,  y) be four arbitrary functions of the variables 

x - p -  m, y = e .  m (79a) 

Then the surfaces defined by the conditions 

s k = Fk(x,  y) (79b) 

are extremals of  the action. 
The field equations are satisfied because the energy momentum tensor, 

Einstein tensor, and gauge current are proportional to the quantities k~k t3 
and k ~, respectively (in the standard coordinates for M 4) so that the various 
contractions appearing in the field equations vanish. For the same reason 
the solutions are massless. 

In fact the assumption about the representability as a graph of some 
m a p  M 4--> C P  2 is not essential. A generalization of the conditions defining 
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the solutions is 

Fk(x , y ,  s) =0, i=  1 , . . . , 4  (80) 

where F k are four arbitrary functions of their arguments with the property 
that the coordinate variables s k can be solved as finitely many-valued 
functions of x and y locally. 

3.4.4. Minimal Surface Extremals 

We have already found that stringlike minimal surfaces might provide 
a natural phenomenological description of hadrons at certain length scales. 
Since minimal surfaces can be regarded as a direct generalization of a 
geodesic line, which is a one-dimensional minimal surface, the minimal 
surface phenomenology might work also in case of other elementary parti- 
cles. The minimal surface extremals might even dominate in the functional 
integral in the short length scale limit .of the theory, when there is no sense 
to speak about a continuous space-time but rather a gas of 3-particle-like 
3-manifolds in the space H. 

The minimal surface property implies the vanishing of the Higgs field 
so that the concept of the unitary gauge is not well defined for these surfaces 
and one cannot form SU(2)L singlets in the manner described in the first 
paper of the series. Thus one expects that the minimal surface phase 
corresponds to the SU(2)L nonconfining phase of the theory. 

It is clear that the addition of the Higgs term of form 

L = a Tr (D~HD~'H)+ V ( H )  (81) 

(a is some dimensionless number) makes minimal surfaces natural extremals 
of the effective action. It is quite evident that Higgs term cannot be present 
in the action at large length scales: it is impossible to obtain the results of 
classical electrodynamics if the Higgs term is present. 

The field equations indeed allow minimal surfaces as its extremals. A 
characteristic feature of these extremals is that Einstein equations can 
contain a "cosmological term"; field equations are satisfied provided only 
that the condition 

T ~ = KG ~ + hg ~ (82) 

holds. Here the "cosmological constant" h is an arbitrary parameter. Clearly, 
minimal surface extremals mean a departure from the GRT. 

In order to obtain a description of a free elementary particle one might 
also require that the flow of various quantum numbers between S-condensed 
phase and free particle phase is vanishing: in other words the condition 

GaOHkr = 0 (83) 

is satisfied. 
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This condition is certainly satisfied if Einstein tensor is proportional 
to the metric tensor 

G ~t3 = Kg '~~ (84) 

If  the surface in question is a Cartesian product, the condition generalizes: 
Einstein tensor is a linear combination of the various metric tensors. 

The simplest surfaces satisfying this condition are simply pieces of flat 
Minkowski space. It is tempting to interpret these surfaces as hadronic bags. 
The motivation for the identification is that string description of hadrons 
is not expected to work at short length scales since the string tension becomes 
extremely large. Thus the bag configuration is expected to be energetically 
more favorable. The energy of the system is simply proportional to the 
volume of  the bag (plus boundary terms not treated here). 

A second example of  particlelike surfaces are membrane-type surfaces, 
which are surfaces of type 

X 4= M 1 x S  2 x S  1 (85) 

Here M 1 is a timelike geodesic in M 4, S 2 is the arbitrary two-dimensional 
minimal surface in M 3, and the orthogonal complement of M ~ and S I is 
a geodesic of  CP2. It is well known (Spivak, 1970) that minimal surfaces 
in M 3 have always boundary;  the vanishing of the mean curvature (sum 
of  the two main curvatures) makes the surface negatively curved so that it 
cannot be closed. 

The contribution of the Einstein tensor to the mass of these objects 
has the same form as in case of stringlike objects [equation (68b)] and is 
of  the order of Planck mass unless the two surfaces in question are topologi- 
cally two spheres with two holes or toms;  in this case the contribution 
vanishes identically. 

4. GENERAL FEATURES OF COUPLING CONSTANT 
EVOLUTION 

The basic assumption of our semiclassical approach is that the effective 
action depends on length scale only via the length-scale-dependent coupling 
constants. 

In this section we consider the general features of  the coupling constant 
evolution and show that the requirement "The theory reproduces Maxwell 
electrodynamics at long length scales" implies SU(2)L confinement at long 
length scales in the sense that the bosonic effective action reduces to a pure 
Maxwell action. 

Furthermore, we show that the canonical invariance of Kahler action 
provides an explanation for color confinement. Finally, the problem what 
happens in short length scales is considered. 
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4.1. SU(2)L Confinement at the Level of the Effective Action 

As found in the previous paper the various field quantities in the unitary 
gauge can be regarded as SU(2)L singlets formed as composites of the 
normalized Higgs field and spinor and gauge boson fields. Thus the concepts 
of SU(2)L confinement and symmetry breaking are dual. 

To illustrate the nature of this duality consider the description of the 
mass splittings in the two pictures. The nonvanishing expectation of the 
Higgs field implies the existence of a preferred gauge, the unitary gauge, 
in which the mass matrix defined by Higgs field is diagonal and symmetry 
breaking. On the other hand, the field quantities in the unitary gauge can 
be regarded as SU(2)L singlets and thus they only apparently form SU(2)L 
multiplets; thus the masses of the corresponding states need not be equal. 

It is important to notice that the confinement picture makes sense only 
if the Higgs field is nonvanishing; for minimal surfaces (say hadronic strings) 
found to be natural extremals of the action at short length scales this gauge 
is ill defined. 

The experience with gauge theories suggests that the gauge coupling 
associated with the SU(2)L interactions should diverge at some finite length 
scale if the duality holds. The result in fact follows from a mere requirement 
that the effective action reproduces Maxwell electrodynamics at the limit 
of long length scales. 

In the ordinary gauge theories, where all gauge fields are primary 
dynamical variables this requirement is easy to satisfy. The nonvanishing 
Higgs expectation implies that only photons propagate over macroscopic 
distances. Now however all field quantities are local composites of the same 
primary dynamical variables and this simple scenario does not work. 

As far as we know, the only way to reproduce Maxwell electrodynamics 
at the limit of long length scales is to assume that the effective action 
becomes a pure U(1) action at this limit so that the Weinberg angle vanishes 
at this limit or equivalently, the SU(2)L coupling diverges. Indeed, as already 
shown, the pure U(1) action reproduces Maxwell electrodynamics, when 
the induced metric on X 4 is approximated with a flat metric. 

Even more, we expect that a transition to the "Maxwellian phase," 
differing radically from the "Yang-Mills phase" because of its enormous 
vacuum degeneracy, occurs at some finite length scale L. This length scale 
is expected to play an important role in understanding the masses.of various 
particles. A great challenge for the TGD approach is to evaluate the order 
of magnitude for this length scale and to understand, why this length scale 
is so enormous as compared with the length scale provided by the size of CP2. 

An obvious counterargument against the proposed scenario is that it 
is in contradiction with the experimental facts. The measured value of the 
Weinberg angle, which is believed to correspond to the value of this 
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parameter at the limit of long length scales, is nonvanishing: sin 2 0~ = 0.23 
(Weinberg, 1967; Salam, 1968; Glashow, 1961). 

We do not think that this counterargument is as serious as it looks at 
first. Weinberg angle is a parameter related to the perturbative treatment 
of the electroweak interactions using gauge coupling as expansion 
parameter. 

In TGD approach the perturbative treatment makes sense at short 
length scales only, say at length scales of the order of Compton length of 
the intermediate gauge boson. Thus the measured value of the Weinberg 
derived by comparing the predictions of the perturbative approach to 
electroweak interactions must correspond to the value of this parameter at 
short length scales and the paradox disappears. 

Also one might argue that the idea of weak confinement is absurd; 
weak interactions are indeed weak! The possible divergence of the elec- 
troweak coupling at some length scale should certainly manifest itself in 
some manner. The point is that this divergence indeed manifests itself in a 
very spectacular manner since it implies color confinement; colored particles 
do not propagate in Maxwellian phase as we will show in the next section. 

An interesting problem is whether one could reproduce the result of 
the GWS model both in short length and long length scales using perturbative 
approach. This might proceed roughly as follows: 

(i) In order to handle the spin in an appropriate manner replace the 
external current term describing the Y-condensed matter with Dirac action. 
The Dirac spinors are in these approaches phenomenological fields describ- 
ing particles pointlike in the length scale considered; in particular, different 
particle families are treated using separate Dirac spinors. Observe that Dirac 
action is well defined irrespective of the values of the gauge couplings. 

The masses of the various fermions should be input parameters in this 
approach and should be interpreted in terms of the Higgs expectations 
associated with the very small 3-manifold describing the elementary fermion. 
Notice that the value of the Higgs field associated with a typical surface in 
Maxwellian phase has the order of magnitude ~< R/L and is extremely small 
as compared with the mass of a typical lepton. 

(ii) One could try the calculation of the transition amplitudes around 
the solutions of the Einstein-Maxwell equations with vanishing spinor fields. 
Simplest surfaces of this type are simply the flat submanifolds of H;  in 
particular Minkowski space itself. Of course, the perturbation theory should 
be performed using the coordinate variables of CP2 as field variables. 

4.2. Color Confinement 

In the sequel we shall first show that the canonical invariance of the 
Maxwell phase implies color confinement. Furthermore, we show that string 
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and bag models of  hadrons emerge as natural descriptions of hadrons in 
the appropriate length scales. 

4.2.1. Canonical Invariance and Color Confinement 

The characteristic features of the Maxwellian phase are the vacuum 
degeneracy of  the action [Maxwellian phase as quantum counterpart of the 
spin glass phase? (Sherrington and Kirkpatrick, 1975; Kirkpatrick and 
Sherrington, 1978)] and the approximate canonical invariance [exact to 
order O((R/L)2)]. The action of the canonical transformation to gauge 
field is equivalent to that of  a U(1) gauge transformation. 

Canonical transformations do not leave the curvature scalar part of 
the action even approximately invariant (the appearance of  the 1 / G  factor 
in the action causes this). If  one however allows also the energy momentum 
tensor of  the ~-condensed matter to change in the canonical transformation 
so that Einstein equations remain true, canonical transformations become 
dynamical symmetries transforming to each other dynamical evolutions 
with identical electroweak (electromagnetic) properties. 

If  one requires that the whole action remains approximately invariant 
in the canonical transformation then one must require that the gravitational 
coupling and by color gravitational analogy also the color coupling becomes 
very large at long length scales (having perhaps a pole in some hadronic 
mass?). In our opinion this is not necessary for color confinement to occur. 

An important  consequence of the canonical invariance is that color 
symmetries become "semilocal." Let V, i =  1, 2 be two open sets of CP2 
satisfying the conditions (1) V1 c V2 and (2) the intersection t~V 1 (-~ (~V 2 of 
the boundaries of V~ is empty. 

Theorem. Given sets V; with the properties specified above there exists 
a canonical transformation, which equals a given color isometry inside the 
set V1 and reduces to identity transformation outside the set V2. 

Proof Since color isometries are canonical transformations one can 
find a Hamiltonian H, which exponentiates to the given color isometry. 
From the assumptions (1) and (2) it follows that there exists a real-valued 
continuous function 

which has constant value 

k: CP2 ~ R 

k(s) = 1 (86) 

in the set V1 and vanishes outside the set V2. The canonical transformation 
with the required properties is obtained by exponentiating the Hamiltonian 
H1 = kH. �9 
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For a surface X 4 representable as a graph for a map M 4 ~  C P  2 the 
action of  this t ransformation is nontrivial only in the inverse image f - l (V2)  
of  the set V2 and is equivalent to a color rotation in the set f - l (V1).  I f  the 
set f - l ( v 2 )  consists of  several components  one can clearly restrict the 
t ransformation so that it acts only in one of the components  nontrivially. 
Moreover,  one can combine several transformations of  this kind associated 
with disjoint open sets V~. 

These transformations can differ from a unit transformation in an 
arbitrarily small region of X4; in this respect they resemble local gauge 
transformations.  There are however some important  differences: 

(1) For an arbitrary point belonging to f - l ( V ) ,  there exists an open 
set, where the t ransformation is a rigid color rotation. One can say that 
color invariance is "semilocal ."  

(2) These transformations are dynamically generated approximate  
symmetries and thus one cannot get rid of  the associated "gauge degeneracy" 
by using the gauge-fixing procedure. 

The main result of  this section is that the phenomenon of color confine- 
ment can be understood as a consequence of the "semilocali ty" of  the color 
invariance in the Maxwellian Phase (!). To derive this result we study the 
properties of  the current-current  correlation function (c.c.c.f.) 

(J(ml)J(m2)) (m~ and m 2 are points of  M 4) (87) 

associated with two color currents and defined as a functional average of 
the product  of  the classical color currents. 

We do this because we expect this function to carry essential informa- 
tion about the properties of  the color interaction; for instance in QED the 
scattering cross section for two charged particles is closely related to c.c.cof. 

We expect the color confinement to manifest itself via the vanishing 
of  the c.c.c.f, for space-time intervals large compared with the length scale 
L, where the transition to Maxwellian phase occurs. 

Consider  now the evaluation of c.c.c.f. What we want to evaluate is 
the color correlation function in a state with given electroweak quantum 
numbers. The calculation neglects quantum fluctuations completely; the 
color correlation function is evaluated as expectation value over classical 
field configurations with fixed electroweak currents. In particular, weak 
currents associated with the ~-condensed matter  vanish identically by 
Einstein-Maxwell  equations. 

By color gravitational analogy the color currents are closely related to 
the energy momentum tensor of  the g-condensed matter and one cannot 
pose any restriction on the energy momentum tensor of  the g-condensed 
matter. The assumption about the color gravitational analogy is essential; 
otherwise one should fix also the energy momentum tensor of  the g- 
condensed matter  and the canonical degeneracy would be lost. 
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The triviality of the correlation function follows basically from the 
canonical invariance of the Maxwell action. One must average over a very 
large set of electromagnetically equivalent configurations and the semilocal 
color symmetry implies that the direction of color current in Lie algebra of 
SU(3) is practically random for a configuration having given electroweak 
properties and as a consequence color correlation vanishes. 

Observe that weak confinement is necessary to hinder the propagation 
of color. I f  the weak coupling were not infinite then fixing of electroweak 
gauge currents would fix completely the surface X 4 as well as the energy 
momentum tensor of the S-condensed matter by Einstein equations and the 
correlation function were simply the product of the classical color currents. 

The triviality of color correlations in the ~-condensed phase together 
with the uncertainty principle suggests that colored particles are very heavy 
in Maxwellian phase and thus do not propagate. This idea is supported 
also by a direct dimensional argument. The color current is given by 

~ k .~ (88) J i )  = K G  Sl ,~SkIJi  ) 

(color gravitational analogy !) so that one obtains the following estimate for 
the color charge in terms of the mass of the particle 

q ~- MR2/L  (89) 

where L is the length scale in question. Clearly, a color charge of order 
unity implies a mass of the order of Planck mass. 

In the preceding discussion we have made no explicit assumptions 
about the length scale evolution of the color and gravitational couplings; 
the mere requirement that SU(2)L coupling diverges at some length scale 
makes color propagation impossible at larger length scales. This result is 
not so surprising as it first looks since all field quantities are in TGD 
approach composites of the same primary variables. 

If one accepts exact color gravitational analogy embodied in the effec- 
tive action approach one expects that the linear relationship between color 
and gravitational couplings holds at all length scales. Thus one has two 
alternative scenarios for the evolution of the color coupling: 

(i) No divergence appears in the couplings at hadronic length scales. 
(ii) Both color and gravitational couplings have divergence at some 

hadronic length scale; the divergence of the gravitational coupling might 
be related to the existence of spin-2 hadrons. 

We regard the first alternative as more natural since field equations 
indeed allow stringlike objects (minimal strings) having string tension as 
free parameter. If  one requires that strings obey Einstein equations then 
string tension is of the order of 1 /G and one must require that in hadronic 
length scales gravitational coupling becomes very large. 
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There is of course a scenario in which color gravitational analogy is 
given up. This means the addition of a separate color term in the effective 
action and the assumption that this term vanishes at large length scales; 
thus also the color coupling must diverge at some length scale. 

Summarizing, the scenario in which color gravitational analogy is exact 
and color confinement is caused by the divergence of SU(2)L coupling 
seems to be the simplest description of color confinement. 

4.2.2. String and Bag Pictures of Hadrons 

The effective action allows stringlike minimal surfaces as its extremals 
as already found. The minimal surface property of these extremals makes 
their interpretation as hadronic strings possible. 

The first consequence of the minimal surface property is that Einstein 
equations need not hold true and the energy momentum tensor satisfies the 
constraint 

T ~ = TZ ~ + T~ ~ = Ag ~ (x :) + A, g ~ (y2) (90) 

The parameter is not fixed by the field equations; a natural expectation is 
that it gives a correct hadronic string tension. The contribution of the 
Y-condensed matter (sea particles and possible valence quarks) to string 
tension must be positive and the contribution of electroweak (!) monopole 
field (ends of  the string correspond to magnetic monopoles) rapidly grows 
to value of  the order 1/G. Therefore these strings can have hadronic string 
tension in a rather limited range of length scales. In the shorter length scales 
stringlike configurations are not expected to dominate for the simple reason 
that the enormous string tension makes them energetically unfavored. 

A second consequence of the minimal surface property is the vanishing 
of the Higgs field. Thus one expects SU(2)L nonconfinement and color 
nonconfinement to result. This seems to be the case also for the minimal 
strings in the Maxwellian phase. The point is that the argument leading to 
the semilocal color invariance and thus to a short correlation length for 
color currents does not apply to stringlike objects since any semilocal color 
rotation in CP2 induces the same color rotation at all points of the string. 
Thus the colors associated with different points of the string are correlated. 

As already noticed the string picture applies only in some rather limited 
length scale. It is natural to expect that minimal surfaces dominate the 
functional integral also in the shorter length scales. What makes the string 
description inapplicable is the enormous string tension deriving from elec- 
troweak monopole field. Thus the surfaces representable as graphs of a map 
M4~Cp2 probab ly  give the dominant contribution to the functional 
integral. 
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The simplest representative for this kind of a surface is a piece of 
Minkowski space. The energy density of the ~-condensed matter is expected 
to be given by the expression 

T~ ~ = Ag ~~ (91) 

where the parameter A remains undetermined. One obtains an upper bound 
for this parameter by comparing the resulting mass with the hadronic masses. 

This implies that the bag model picture (another geometric model of  
hadrons! (Johnson, 1975) becomes a more appropriate description of 
hadrons. Applying perturbative approach to the calculation of the functional 
integral around Minkowski-space-like vacuum extremals one obtains a 
formalism resembling perturbative field theory. This result is in accordance 
with the idea of  the asymptotic freedom (Politzer, 1974) at high energies. 

Combining the result obtained one can indeed understand some of the 
mysterious-looking features of color confinement naturally. Consider the 
description of  a typical high-energy hadronic reaction in this scenario. Since 
very high energies are involved in the collision a natural description for the 
reaction is using effective action at short enough length scales. Thus one 
must give up the ordinary picture of  continuous 3-space. 

Rather one must describe the matter as a gas of 3-manifolds moving 
freely above some region (reaction volume) of classical 3-space. As the 
reaction proceeds reaction products ~;-condense continually to the underly- 
ing continuous 3-space. Because colored states do not propagate in Maxwel- 
lian phase only color singlets can escape from the reaction volume. Thus 
the reaction continues until all matter has left the reaction region as 
~-condensed color singlets. 

5. C O S M O L O G I C A L  CONSIDERATIONS 

As already found the homogenous and isotropic cosmologies reduce 
in the limit of  a vanishing mass density to M 4, the light cone of Minkowski 
space. If  one accepts the breaking of Poincar6 invariance in the cosmological 
scale then the choice V = M 4 must be considered seriously. In the following 
we shall show that for all globally imbeddable cosmologies the mass density 
is smaller than the so-called critical mass density. 

The main departure of TGD approach from GRT cosmology is the 
presence of two forms of matter. The g-condensed matter corresponds to 
matter of GRT since it satisfies Einstein equations. The matter consisting 
of  free, non-S-condensed particles has no counterpart  in GRT. We shall 
show that this departure might provide a natural solution to the basic puzzles 
of the GRT cosmology provided the choice V = M 4 is accepted. 
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Also a model for spiral galaxies based on the properties of  the cosmic 
strings is proposed providing a possible solution to the problem of dark 
matter (Fall and Lynden-Bell, 1981); the dark matter corresponds to the 
enormous mass density associated with cosmic strings. 

5.1. The Condition p < p~, as Imbeddabil ity Condition 

A common feature of  the M 4- and M4-based cosmotogies is that they 
both allow global imbedding only for the hyperbolic cosmologies having 
the property that the mass density is lower than the critical mass density 
(Misner et al., 1975; Adler et al., 1975) 

Per = 3 H 2 / 8  7rG 
(92) 

H = a / a  = 1 / ( g o o ) l / 2 a  

To construct the imbedding to M4+ (and at same time to M 4) let us first 
restate the representation of the line element of M4+ 

d s  2 = d a  2 - a2(K  d r 2 +  r 2 d~Qfi) 
K = 1 / ( l + r  2) (93) 

Here the coordinates (a, r, 0, ~ )  are related to the Minkowski coordinates 
(m  ~ rM, 0, alp) by 

a 2 = (m~ 2 -  r 2 
(94) 

ra = r M 

Clearly any surface representable as a graph for a map 

s k = f k ( a )  (95a) 

gives rise to a hyperbolic cosmology with the metric given by 

ds = A da 2 - a2 (K  dr2+ r 2 df~ 2) 

A =  1 k ~ (95b) 
- f l a f  loskl 

One can imbed the cosmologies satisfying the conditions p --- Per and p > Per 
for which the factor K is given by 

K = 1 (96) 

and by 

K = 1/(1 - r 2) (97) 

respectively, only for special metrics and only partially. 
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The imbedding is given by the following equations: 

sin 0 = ka/ R 
(98) 

t �9 

6 ( r )  = J [ ( K - 1 / ( 1 +  r2)] ~/2 dr/k 

Here 0 and ~b denote the standard spherical coordinates of the geodesic 
sphere of  type (II). The first condition can be satisfied only for times smaller 
than a = R / k  so that the imbedding cannot be global. The reason for the 
nonimbeddabili ty of nonhyperbolic cosmologies is the hyperbolic nature 
of M 4. 

Yang-Mills action allows as its vacuum extremal any surface represent- 
able as a submanifold of M 4 • D 1, where D ~ is an arbitrary one-dimensional 
submanifold of CP2. The above-described hyperbolic cosmologies are of 
this type. Thus the effective action poses no conditions on allowed cos- 
mologies provided they are hyperbolic, isotropic, and homogenous, that is, 
that they correspond to Lorentz invariant submanifolds of M 4. 

It should be noticed that the imbedding of a given cosmology is highly 
nonunique;  the choice of the submanifold D ~ is arbitrary. This can be 
understood by first noticing that any submanifold can be represented as a 
surface 

S k = const, k ~ r (99a) 

by choosing the coordinates suitably. 
By a suitable choice of the time dependence of the coordinate s r one 

can imbed arbitrary hyperbolic cosmology in M4•  D 1. 
It is important to notice that the different imbeddings give rise to 

different cosmologies in the sense that the quantity 
/ ' ~  a /3  K.i" k D~(G~hkl~ ) = ,_, , ,  ~ (99b) 

describing the flow of  the various isometry charges between the ~-condensed 
and free phase depends on imbedding. 

Which imbedding is the correct should in principle be solved from the 
equations governing the interaction between the ~-condensed and "vapor"  
phase. In principle one needs kinetic equations for various particle densities 
in order to describe their evolution in the two phases. 

5.2. Minkowski Space or Its Light Cone 

It is not possible to differentiate in the laboratory scale between the 
two possible alternatives concerning the choice of the factor V in the 
decomposition H = V x CP2; V can be either Minkowski space or its light 
cone. The following arguments however favor the choice M 4. 
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(1) This choice makes the big bang cosmology a necessity and fixes 
the arrow of  time in cosmological scale (time reflection invariance is broken 
also microscopically as found in the first paper of the series). 

(2) The problem of horizons (Weinberg, 1972) is one central problem 
of the standard cosmology. In TGD one however expects that at very early 
times the S-condensed phase to become unstable so that the vapor phase 
consisting of free particles (compact 3-manifolds) becomes dominant 
(~ evaporation). 

The evaporation is expected to occur because at high temperatures the 
binding energy of  the S-condensed particle is expected to be purely gravita- 
tional and to be very nearly equal to the energy of  the free particle. A simple 
estimate for the binding energy is given by 

EB = E[1 - (g0o) '/2] = E(1 - 1/a) (100) 

where E is the free particle energy, is expected to give an estimate for the 
energy of  S-condensed particle. Thus the particles having free energy smaller 
than the temperature are expected to $ evaporate. 

In fact, the stronger assumption that $ evaporation occurs totally at 
some temperature seems rather natural. 

Thus one expects that at very high temperatures the cosmology reduces 
to light cone cosmology (M4+ itself can be regarded as an empty hyperbolic 
cosmology). Because of  its flatness M4+ has no horizons. The absence of  
horizons in turn nicely solves the paradoxes associated with the isotropy 
of  the microwave background (Weinberg, 1972); since there are no horizons 
the thermal equilibrium is possible in whole a = const hyperboloid of M 4 
and hence also the isotropy of M4+ background~ 

It should be emphasized that the assumption about the total transition 
to M 4 cosmology is unnecessarily strong. All that is needed to solve the 
horizon problem is that the vapor phase acts as a heat bath keeping the 
temperature of the S-condensed phase constant in whole a-const hyperboloid 
of  M4+. 

(3) A second puzzle of GRT based cosmology is the large 
photon /baryon  ratio r (Dolgov and Zeldovich, 1981) 

r -~ 10  9 (101) 

TGD-based cosmology might provide a natural solution to this puzzle also. 
The argument goes as follows. 

The particles of given mass M are expected to be ~-condenses totally, 
when the temperature T - M  is reached if the density of the ~ condensate 
is so large that gravitational binding dominates and gravitational binding 
energy is approximately equal to the particle energy. 
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In order to understand what might happen in ~ condensation consider 
the reverse of the ~-condensation process. In $ evaporation a large amount 
of thermal energy must be supplied in order to liberate the ~-condensed 
matter. This leads to a drop of pressure implying a gravitational collapse 
of the vapor phase so that the number density (in M~) of particles considered 
increases. Of course, in ~ condensation just the opposite occurs. 

Since photons ~ condense much later (on the average) and thus in 
much weaker gravitational field than baryons, the reduction of the photon 
number density is expected to be much smaller than that associated with 
baryons. As a result the ratio of baryon ahd photon number densities is 
reduced from its value before the ~ condensation of baryons. Since baryons 
~-condense at a very high temperature this reduction might explain the 
order of magnitude for the parameter r. 

A rough model of ~ condensation in accordance with this physical 
picture is obtained by the replacement. 

goo(M4+) ~ g0o(X 4) (102) 

in the formulas for energy density, number density, etc., this rule implies 
that the numerical value of energy density remains invariant in ~-condensa- 
tion, the number density of $ is however reduced by a factor 1 /d  

n --, n / , i  (103) 

Let us now derive a rough estimate for the photon to baryon ratio r using 
this result. In order to obtain the estimate we use the expression for the 
temperature 

T =  Toao/ a (104) 

To and ao can be chosen to be the present values of these quantities 
(To=3 K;  ao = 101~ 

Also we use Einstein equations 

d2= G K T 4 a  2 (105) 

where K is some factor of order unity for present purposes. Therefore we 
obtain an estimate for the expansion velocity a 

d = (KG)I /2aoToMp -~ 106 (106) 

(Mp  is the mass of proton). The estimate for the ratio r is obtained from 
the expression for the baryon energy density 

PB ~ P T4 (107) 

where p is the parameter describing the matter-antimatter asymmetry 
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(Dolgov and Zeldovich, 1981) 

p = ( n~ -- gtB)/ n B (108) 

where the baryon and antibaryon number densities are estimated in 
temperature, where baryons and antibaryons are in thermal equilibrium. 

The estimate for the ratio is given by 

r-~ d i p  = 106/p (109) 

Clearly, the order of magnitude of this ratio is determined by the 
~-condensation process. 

5.3. Cosmic Strings 

The effective action allows as its extremals two kinds of cosmic strings: 
the Einsteinian and minimal strings of type I. The string tension associated 
with Einsteinian strings is given by 

k = 1 / 4 G  (110a) 

The corresponding quantity for the minimal strings in the long length scale 
limit of the theory is given by 

k = 8 7 r f / 4 R  z = (9C~s /32e~) /4G  (110b) 

Here we have used the relationships 

f = g/167rce (111) 

(The induced Kahler form is identified as Maxwell field in long length 
scales) and the relationship 

C~s = 4 G /  R 2 (112) 

is assumed to hold true in order to obtain the expression in terms of the 
gravitational coupling. 

When studying the imbedding of Reissner-N6rdstrom solution we 
derived an upper bound for the color coupling (equation (65)); the assump- 
tion that the value of the color coupling is maximal implies that the string 
tension of the strings of type I is 8 times larger than the string tension of 
the Einsteinian strings. The value of the string tension is considerably larger 
than that associated with the cosmic strings of the grand unified theories 
(Zeldovich, 1980); in fact the mass associated with a static Einsteinian 
string of length L is equal to the mass of a black hole of radius L / 2 .  

It has been suggested that cosmic strings of the ordinary gauge theories 
might have acted as seeds of the galaxy formation at the early stages of the 
Universe (Zeldovich, 1980). This is possible only if the cosmic strings are 



862 Pitk~nen 

stable enough. One however expects the enormous string tension of cosmic 
strings to cause a rapid collapse of the ordinary, open cosmic strings 
encountered in GUT's (Zeldovich, 1980) implying a far too short life time 
for these objects. 

For the cosmic strings of TGD the enormous gravitational field near 
the ends of the cosmic string might hinder the decay of the cosmic string 
by the emission of particle radiation (note the analogy with black holes). 

A particularly interesting family of cosmic strings are the objects, which 
might be called spiral strings. Using comoving coordinates (a, r, 0, ~b) for 
the light cone of M 4 and coordinates (a, r) for X 2 the representation of 
the surface X 2 is given 

0 = 7r/2 (113) 

~=~(r) 

The equations expressing the minimal surface property of X 2 reduce to a 
single equation 

~b,r,r + 2~b,r/r + (~bar)3r(1 + r 2) = 0 (114) 

The linearization of this equation yields the equation 

~b, r,r + 2~b, ~/r = 0 (115) 

A general solution of this equation is given by 

c k = a + v / r  (116) 

where a and v are constants. If the condition 

v < l  

is satisfied, the linearization is expected to be a good approximation. 
Equation (114) can be solved also exactly; taking the quantity 

U = r2~blr (117) 

as a new variable equation can be cast into the form 

Ulr q- U3(1 q- r2)/r 3 = 0 (118) 

and thus one can represent the solution as 

cb(r) = f [ - l + 2 r  2 ln(r/ro)] -1/2 dr (119) 

The following properties of these objects make them rather interesting 
cosmologically: 
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(1) In the comoving coordinates these strings look static spiral strings 
in (x, y) plane. In Minkowski coordinates these strings rotate with an angular 
velocity 

w -~ u /rM (120) 

When the condition v < 1 is satisfied the angular velocity is apart from 
logarithmic factors inversely proportional to the distance from the origin 
and as a consequence the orbital velocity of the string is constant in 
logarithmic accuracy. 

(2) The equations defining the string make sense only when the 
condition 

rM -< m ~ (121) 

is true and thus an upper bound for the size of these objects is given by 
this condition; observe that the angular velocity vanishes when this condition 
holds. The equations defining the string become ill defined also when the 
condition 

r 2 ln(r /ro)  < 1/2 (122) 

holds. The critical distance rc is however extremely small for reasonable 
values of the parameter v (the orbital velocity of the string) given by the 
identification 

v(r)  = [2 ln(r/ro)]  (123) 

(3) The energy density of the string behaves as 

p O e ( r - - r e )  -1/2 (124) 

near the singular value rc of the radial variable. Also the amount of string 
per unit volume becomes very large near the origin and the average energy 
density becomes very large in this region. 

These properties of cosmic strings motivate the following model for 
the structure of the spiral galaxies. 

(1) Spiral (perhaps also elliptic) galaxies are concentrations of the 
ordinary matter around cosmic strings (spiral arms correspond to cosmic 
strings). 

(2) The dynamics of the galaxy is determined by the motion of the 
cosmic string: 

(a) The motion of the cosmic string is not appreciably disturbed by 
the presence of the ordinary matter. 

(b) Ordinary matter is gravitationally bound to the cosmic string and 
rotates with the same angular velocity as the cosmic string in the galactic 
plane. 
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This simple model explains some of the basic properties of the spiral 
galaxies amazingly well as we wish to show now. First, one obtains an 
upper bound for the size of the stringlike structures (which can be also 
larger than galaxies). From the requirement (121) as a function of cosmic 
time. If one accepts that the oldest galaxies are formed at the time of 
recombination ( t -  l0 s yr) this criterion gives an upper bound 

L ~  < 105 light years (125) 

for the size of the galaxy. 
The same criterion when applied for a -~ 101~ yr, gives the upper bound 

L<~ 101~ light years (126) 

for the size of the largest stringlike structures. The observations suggest the 
presence of stringlike structures of this size (Zeldovich et al., 1982). 

Second, the model explains at least qualitatively the visible form of 
the galaxies. A direct test for the model is the prediction that the form of 
the spiral arms should be given by the equation 

qb = K / r M  
(127) 

K = v m  ~ 

where the parameter K is directly proportional to the age of the galaxy. 
Thirdly, the average energy density associated with the string is largest 

in the region near the origin and this region is expected to bind ordinary 
matter most efficiently and thus to form the nucleus of the galaxy. 

Finally, recent observations (Einasto et al., 1974; Gallagher, 1979) 
suggest strongly that the objects in the galactic plane move with an orbital 
velocity, which becomes constant at large distances from the galactic 
nucleus. The velocity depends on the galaxy but has the order of magnitude 

v= 10 -3 (128) 

The qualitative behavior is just what one expects in our model! The value 
of the parameter appearing in the linearized equations (116) can be identified 
as the orbital velocity of the matter and thus should have the order of 
magnitude given by equation (128). For the exact solution the velocity 
departs from the constant value only by slowly varying logarithmic terms. 

The proposed model of spiral galaxy differs decisively from the models, 
which assume the existence of a galactic halo consisting of dark matter 
(Fall and Lynden-Bell, 1981): cosmic strings take the role of dark matter 
now. In these models it is assumed that the objects in the galactic plane 
move on approximately circular orbits so that the radius of a given orbit 
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is given by the condition 

v2 /R  = G M ( R ) / R  2 (129) 

Here the quantity M ( R )  denotes the mass inside a sphere having galactic 
nucleus as its center. This model explains the observations [v(r) -const]  
provided the condition 

M ( R )  = aR 
(130) 

a = 1)2/G = 10-6/G 

is satisfied. 
It is amusing that our model predicts the same behavior for M i R )  at 

large distances R; the coefficient a gives an upper bound for the string 
tension of the cosmic string. This upper bound can be satisfied only in case 
of strings of type I and provided the value of color coupling at long length 
scales is small enough. 

For the radius of CP2 one would obtain 

R --- 103/G (131) 

so that the radius of CP2 is of the same order as the Compton length 
associated with the super massive gauge bosons of GUT's (Fritsch and 
Minkowski, 1975; Georgi, 1975) and too large. We see however no compell- 
ing reason to require that the argument based on the use of Kepler's law 
should be taken seriously if the visible matter plays no essential role in the 
dynamics of the galaxy. 

What makes the cosmic strings so exciting is that they might provide 
a mechanism generating the observed matter-antimatter asymmetry 
(Dolgov and Zeldovich, 1981). 

(1) The theory breaks CP symmetry (Cronin, 1981) as found in the 
previous paper of this series. 

(2) CP violation makes possible that the probability for a cosmic string 
to emit fermion differs from the probability to emit antifermion. As a 
consequence cosmic strings develop nonvanishing baryon and lepton 
numbers. 

(3) Assume that the total fermion number densities vanish at all times. 
These assumptions imply that cosmic strings induce matter-antimatter 

asymmetry in the surrounding visible matter at very early times. Therefore, 
when temperature becomes sufficiently small, the fermion-antifermion anni- 
hilation begins (Fitch, 1981) and leads to a Universe consisting preferentially 
of matter. 

The proposed mechanism differs from the corresponding mechanisms 
proposed in the context of GUT's in that the role of massive gauge bosons 
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is taken by cosmic strings. This mechanism could of course work in TGD 
also, provided leptons are assumed to be 3-quark composites. What is 
needed are the counterparts of the super heavy gauge bosons B having 
quark number 2 and having the decay modes B~  L+q and B ~  q+t]. If 
the rate for the lepton (quark) production is CP-noninvariant matter- 
antimatter asymmetry results. 

6. CONCLUSIONS AND OUTLOOK 

We have devoted this paper to the following problems related to the 
construction of dynamics in TGD framework. 

(1) To define the concepts of spacetime, particle, field, etc. as length- 
scale-dependent concepts. 

(2) To formulate a semiclassical description of matter based on the 
idea that matter appears in three forms in a given length scale. The "classical 
matter" corresponds to ;~-condensed particles pointlike in the length scale 
considered and to the energy densities associated with the fields defined in 
the classical spacetime. The matter, which has not suffered ~-condensation 
has no counterpart in GRT. 

(3) To derive nontrivial information about the general properties of 
the theory by using the concept of the bosonic effective action and by 
making some general assumptions about its form. 

We have found that the classical matter satisfies Einstein equations; 
the nonconservation of energy and related quantities can be understood as 
a signal about the exchange of the conserved quantities between the classical 
matter and free particles. 

The assumption of the minimally broken conformal invariance of the 
length-scale-dependent matter effective action together with some technical 
assumptions led to the symmetry broken Yang-Mills action with length- 
scale-dependent coupling constants as a unique candidate for the matter 
part of the effective action. 

The requirement that effective action reproduces Maxwell electrody- 
namics at long length scales leads to the SU(2)L confinement picture, which 
was in the previous paper found to be dual with the symmetry-breaking 
picture. Furthermore, the transition to the Maxwellian phase, where the 
action reduces to a pure Maxwell action and where the SU(2)L coupling 
diverges, probably occurs at some finite length scale L, which should play 
an important role in determining the elementary particle masses. 

The feature uniquely distinguishing the Einstein-Maxwell action of 
TGD from the ordinary Einstein-Maxwell action is its enormous vacuum 
degeneracy resulting from the approximate canonical invariance of Maxwell 
action. It was found that the canonical invariance implies "semilocalization" 
of the color symmetries. As a consequence the current-current correlation 
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functions for color currents are expected to be very short ranged. We regard 
this as a symptom of color confinement. Of course, the very occurrence of 
SU(2)L confinement and its close relationship with color confinement is a 
feature characteristic to TGD approach. 

We found that at short length scales the concept of the classical 
space-time probably does not make sense; rather one must describe the 
matter as a gas of particletike 3-manifolds moving in Minkowski space or 
its light cone. This result was found to have important cosmological 
consequences. 

Summarizing, to our opinion the results of  this and earlier papers show 
that TGD approach to the description of  the fundamental interactions 
should be taken seriously. It must of course be admitted that there are many~ 
weakly understood issues. To mention only one. How to understand the 
enormous size of the elementary particle length scale as compared with the 
length scale of the space CP2? 

An important task to be faced is the construction of quantum TGD. 
Although the argumentation based on the concept of length-scale-dependent 
effective action has produced nice results, the task of actually performing 
functional integral over submanifolds of H seems horrible. Moreover, we 
have no formal proof  for the unitarity of the possibly resulting theory. Thus 
a deep revision of  the existing ideas about the construction of quantum 
theory may well be needed in order to build a proper quantum TGD. We 
shall return to this problem in the third paper of series. 
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APPENDIX. BASIC PROPERTIES OF CP2 

A1.  CP2 as  a M a n i f o l d  

CP2, the complex projective 2-space, is defined by identifying the points 
of the complex 3-space C3 under the equivalence 

( Z1, Z2,-73) ~ /~( Z1, Z2, Z3) (A1) 
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Here h is any nonzero complex number. The pair z~/z  j for a fixed j and 
zi # 0 defines a complex coordinate chart for CP=. As j runs from 1 to 3 
one obtains an atlas of  three charts covering CP= the charts being 
holomorphically related to each other (e.g., CP2 is a complex manifold). 
The points z 3 # 0 form a subset of  CPz homeomorphic  to R 4 and the points 
with z 3= 0 a set homeomorphic  to CP~ = S:.  Therefore CP2 is obtained 
from R 4 by "adding the 2-sphere at infinity." 

Besides the complex coordinates ~2= z~ /z  3, i = 1, 2, the coordinates of  
Eguchi and Freund (Eguchi et al., 1980) will be used and their relation to 
the complex coordinates is given by 

~1 = z + it 

~2 = x + iy (A2) 

These are related to "spherical" coordinates via the equations 

s ~1= r exp[i(O + q~)/2] cos(0/2)  
(A3) 

~2 = r exp[i(~b - 6 ) / 2 ]  sin(0/2) 

The ranges of  the variables r, 0, q~, and 0 are [0, oo], [0, zr], [0, 4r and 
[0, 27r], respectively. 

Considered as a real four-dimensional manifold CP2 is compact and 
simply connected, with Euler number 3, Pontryagin number 3, and second 
Betti number  b = 1. The last property stems from the fact that the second 
homology group H2(CP2) is isomorphic to integers. 

A2. Metric and Kahler Structures of CP2 

In order to obtain a natural metric for CP2 observe that CP2 can be 
thought of as a set of  the orbits of the isometries z i ~ e x p ( i a ) z  i on the 
sphere $5: 2(zil 2 = R:. The metric of  CP2 is obtained by projecting the metric 
of S 5 orthogonally to the orbits. Therefore the distance between the points 
of  CP2 is that between the representative orbits on S 5. The line element has 
the following form in the complex coordinates: 

ds 2 = g.~ d~ ~ d~ b (A4) 

�9 where the Hermitian metric ga~ is defined by 

ga6 = R 20a O/~ln F 

The quantity F is defined as 

(a5) 

F = 1 + r 2 (A6) 
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An explicit representation of the metric is given by 

ds2/  R 2 = (dr2+ r2cr~)/ F-} - r2(cr2 q - or2)/ F 2 

where the quantities o-i are defined as 

r20h = im(~:l d~:2 _ ~:2 dsCl), r2cr2 = _Re(sOl d~2 _ so2 d~:l) 

r2~3 = - I m ( E ~  k d~  -k)  

The vierbein forms, which satisfy the defining relation 

Skt= R 2 e A e ~  6A, B 

are given by 

e ~ = dr~F,  e I = ro'l/x/--F 

e2= rcr2/v/-ff , e 3 = ro-3/ F 

The vierbein connection satisfying the defining relation 

de A = _ V a ^ e B 

is given by 
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(A7) 

(A8) 

(A9) 

(A10) 

(M1) 

J = - ig~6  d ( "  d (  b (A14) 

Because J is closed, CP2 by definition is a Kahler manifold. The Kahler 
form J defines in C P  2 a symplectic structure because it satisfies 

J f f r  = (A15) 

The form 2J is integer valued and by its covariant constancy satisfies free 
Maxwell equations. Hence it can be regarded as a curvature form of  a U(1) 

Vm = - e l / r ,  V23 = el  / r 

V02 = - e 2 /  r, V3, = e2/  r (A12) 

V o 3 = ( r - 1 / r ) e  3, V l 2 = ( 2 r +  l / r ) e  3 

The representation of the curvature (components of the curvature tensor in 
the vielbein basis) are constant reflecting the fact CP2 is a constant curvature 
space: 

Rol = e~ e I - - e 2 A  e 3, R23= --e~ el-t- e2 A e 3 

R o z = e ~  A e 2 - - e 3  ^ e  1, R 3 1 = - e ~  A e 2 + e 3  ^ e  I (A13) 

R o 3 = 4 e ~  2, R 1 2 = 2 e ~  2 

The metric defines a real, covariantly constant, and therefore closed 
2-form J: 



870 Pitk~nen 

gauge potential B carrying a magnetic charge of unit 1/29 (g denotes the 
gauge coupling). Locally one has therefore 

J = d B  (A16) 

where B is the so-called Kahler potential. 
It should be noticed that the magnetic flux of J through a 2-surface in 

CP2 is proportional to its homology equivalence class, which is integer 
valued. The explicit representation of J and B are given by 

B = 2re3 (A17) 

J =  2(e0A e3+e l  A e2) 

The vielbein curvature form and Kahler form that are in complex coordinates 
are covariantly constant and in complex coordinates they have only com- 
ponents of type Va~ = -V~a and Jag = -Jga, respectively (Vab = Va5 = 0 and 
Jab = J ~  = 0 ) .  

REFERENCES 

Adler, Basin, Schiffer (1975). Introduction to General Relativity, McGraw-Hill, New York. 
Amit, D. (1975). Field Theory, The Renormalization Group, and Critical Phenomena. McGraw- 

Hill, New York. 
Anderson, B., Gustafson, C., Ingelman, G., and Sjostrand, T. (1983). Physics Reports, 97. 
Brander, M. (1981). Physics Reports, 75, 4. 
Chew, G., and Rosenzweig, C. (1978). Physics Reports, 41C. 
Cronin, J. W. (1981). Reviews of Modern Physics, 53. 
Dotgov, A. D., and Zeldovich, Ya. B. (1981). Reviews of Modern Physics, 53(1). 
Douglas, J. (1939). Annals of Mathematics, 40. 
Eguchi, T., Gilkey, B., and Hanson, J. (1980). Physics Reports, 66, 6. 
Einasto, J., Kaasik, A., and Saar, E. (1974). Nature, 250, 309. 
Eisenhart (1964). Riemannian Geometry. Princeton University Press, Princeton, New Jersey. 
Fall, S. M., and Lynden-Bell, D. (1981). The Structure and Evolution of Normal Galaxies. 

Cambridge University Press, Cambridge. 
Fitch, V. L. (1981). Reviews of Modern Physics, 53. 
Fritsch, H., and Minkowski, P. (1975). Annals of Physics (New York), 193. 
Gallagher, J. E., and Faber, S. M. (1979). Reviews of Astrophysics, 17, 135. 
Georgi, H. (1975). Particles and Fields--1974, C. E. Carlson, ed. A.I.P., New York. 
Gibbons, G. W., and Pope, C. N. (1978). Communications in Mathematical Physics, 61, 239. 
Glashow, S. (1961). Nuclear Physics, 22, 579. 
Gliozzi, F. (1978). Nuclear Physics, B141, 379. 
Hawking, S. W., and Pope, C. N. (1978). Physics Letters, 73B (1), 42. 
Helgason, S. (1978). Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, 

New York. 
Iztykson and Zuber (1980). Quantum Field Theory. McGraw-Hill, New York. 
Jacob, M. (1974). Dual Theory. North-Holland, Amsterdam. 
Johnson, K. (1975). Acta Physica Polonica, B6, 865. 



Topological Geometrodynamics. II 871 

Kirkpatrick, S., and Sherrington, D. (1978). Physical Review B, 17, 3484. 
Misner, Thorne, Wheeler (1975). Gravitation. W. H. Freeman, San Francisco. 
Nambu, Y. (1970). Lecture Notes Presented for the Summer Institute of the Niels Bohr Institute 

(SINBI). 
Pitk~inen, M. (1983). International Journal of Theoretical Physics, 22, 575. 
Pitk~inen, M. (1981). International Journal of Theoretical Physics, 20, 843. 
Politzer, H. D. (1974). Physics Reports, 14C. 
Salam, A. (1968). In Proceedings of the 8th Nobel Symposium, Stockholm, N. Swartholm, ed. 

Almquist and Wicksells, Stockholm. 
Schwartz, J. S. (1968). Caltech Preprint, CALT-68-880. 
Sherrington, D., and Kirkpatrick, S. (1975). Physical Review Letters, 32, 1792. 
Spivak, M. (1970). Differential Geometry L Publish or Perish, Boston. 
Susskind, L., and Kogut, J. (1976). Physics Reports, 23, 348. 
Weinberg, S. (1972). Gravitation and Cosmology. Wiley, New York. 
Weinberg, S. (1967). Physical Review Letters 19, 1264. 
Zeldovich, Ya. B, Einasto, J., and Shandarin, S. F. (1982). Nature, 300, 21. 
Zeldovich, Ya. B. (1980). Monthly Notices of the Royal Astronomical Society, 192, 663. 


